1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
| """ # @Time : 2020/9/6 # @Author : Jimou Chen """ from sklearn.linear_model import LogisticRegression import pandas as pd import matplotlib.pyplot as plt import seaborn import numpy as np import missingno as msn from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split
def label_distribution(data): p = data.Outcome.value_counts().plot(kind='bar') plt.show() p = seaborn.pairplot(data, hue='Outcome') plt.show() p = msn.bar(data) plt.show()
def handle_data(): data = pd.read_csv('data/diabetes.csv') print(data.Outcome.value_counts()) handle_col = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI'] data[handle_col] = data[handle_col].replace(0, np.nan)
thresh_count = data.shape[0] * 0.8 data = data.dropna(thresh=thresh_count, axis=1)
data['Glucose'] = data['Glucose'].fillna(data['Glucose'].mean()) data['BloodPressure'] = data['BloodPressure'].fillna(data['BloodPressure'].mean()) data['BMI'] = data['BMI'].fillna(data['BMI'].mean())
return data
if __name__ == '__main__': new_data = handle_data() label_distribution(new_data)
x_data = new_data.drop('Outcome', axis=1) y_data = new_data.Outcome x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.3, stratify=y_data)
model = LogisticRegression() model.fit(x_train, y_train)
pred = model.predict(x_test) print(classification_report(pred, y_test))
|